尾递归优化

原文地址:廖雪峰的Python教程——递归函数


阶乘

1
2
3
4
def fact(n):
if n == 1:
return 1
return n * fact(n - 1)

使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。可以试试fact(1000)

1
2
3
4
5
6
7
>>> fact(1000)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 4, in fact
...
File "<stdin>", line 4, in fact
RuntimeError: maximum recursion depth exceeded

解决递归调用栈溢出的方法是通过尾递归优化。

尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。

上面的fact(n)函数由于return n * fact(n - 1)引入了乘法表达式,所以就不是尾递归了。要改成尾递归方式,需要多一点代码,主要是要把每一步的乘积传入到递归函数中:

1
2
3
4
5
6
7
def fact(n):
return fact_iter(n, 1)

def fact_iter(num, product):
if num == 1:
return product
return fact_iter(num - 1, num * product)

可以看到,return fact_iter(num - 1, num * product)仅返回递归函数本身,num - 1num * product在函数调用前就会被计算,不影响函数调用。

fact(5)对应的fact_iter(5, 1)的调用如下:

1
2
3
4
5
6
===> fact_iter(5, 1)
===> fact_iter(4, 5)
===> fact_iter(3, 20)
===> fact_iter(2, 60)
===> fact_iter(1, 120)
===> 120

尾递归调用时,如果做了优化,栈不会增长,因此,无论多少次调用也不会导致栈溢出。

遗憾的是,大多数编程语言没有针对尾递归做优化,Python解释器也没有做优化,所以,即使把上面的fact(n)函数改成尾递归方式,也会导致栈溢出。