原文地址:廖雪峰的Python教程——递归函数
阶乘
1 | def fact(n): |
使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。可以试试fact(1000)
:
1 | 1000) fact( |
解决递归调用栈溢出的方法是通过尾递归优化。
尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。
上面的fact(n)
函数由于return n * fact(n - 1)
引入了乘法表达式,所以就不是尾递归了。要改成尾递归方式,需要多一点代码,主要是要把每一步的乘积传入到递归函数中:
1 | def fact(n): |
可以看到,return fact_iter(num - 1, num * product)
仅返回递归函数本身,num - 1
和num * product
在函数调用前就会被计算,不影响函数调用。
fact(5)
对应的fact_iter(5, 1)
的调用如下:
1 | ===> fact_iter(5, 1) |
尾递归调用时,如果做了优化,栈不会增长,因此,无论多少次调用也不会导致栈溢出。
遗憾的是,大多数编程语言没有针对尾递归做优化,Python解释器也没有做优化,所以,即使把上面的fact(n)
函数改成尾递归方式,也会导致栈溢出。